

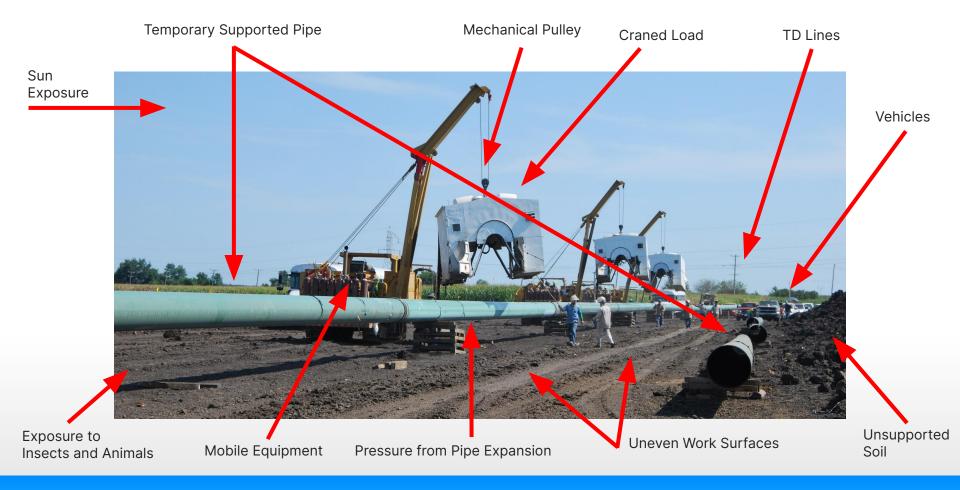
The Energy Wheel and MSDs

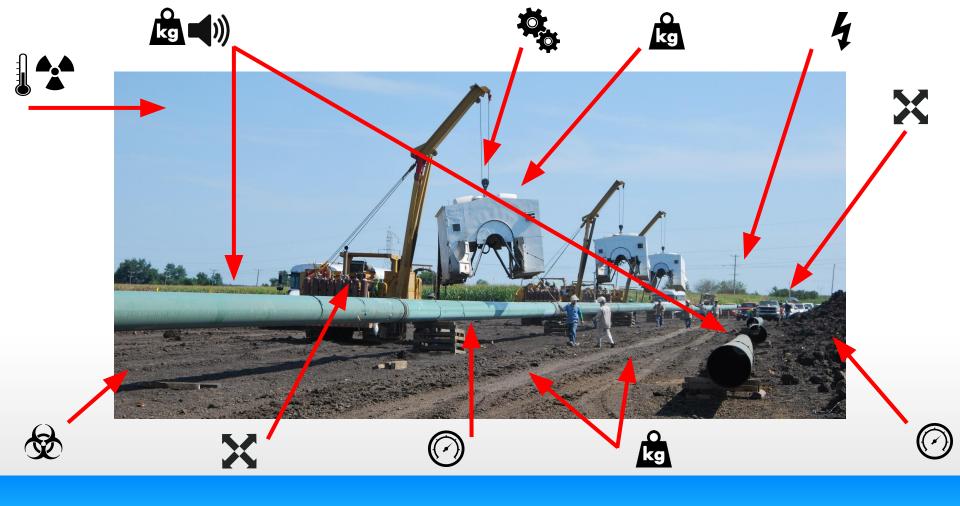
How MSDs Integrate into the Hazard Recognition of Field Employees

Energy Theory

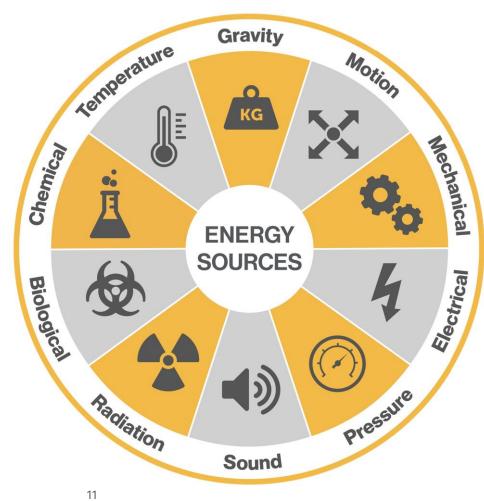
The energy theory is based on the observation that all injuries are the result of some unwanted contact between a person and one or more sources of energy.

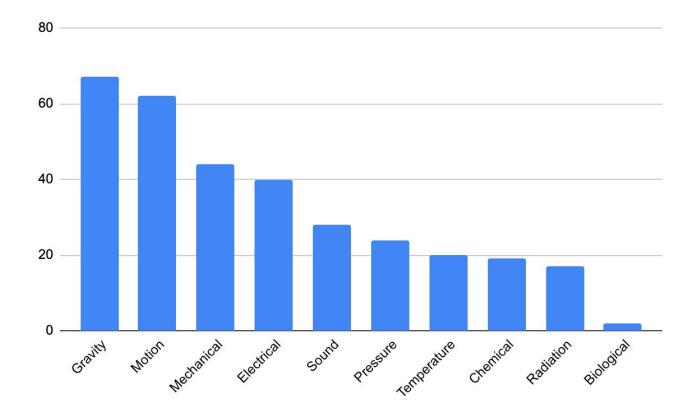
→ A hazard is therefore a source of **energy** that could cause injury, illness or death.


Even the most experienced construction safety professionals will only identify


45%

of hazards on a given site!


FINISHED FILES ARE THE
RESULT OF YEARS OF SCIENTIFIC
STUDY COMBINED WITH THE
EXPERIENCE OF YEARS


FINISHED FILES ARE THE
RESULT OF YEARS OF SCIENTIFIC
STUDY COMBINED WITH THE
EXPERIENCE OF YEARS

TWO OF THE MOST POWERFUL OF ALL HUMAN FEARS ARE THE FEAR OF FAILURE AND THE FEAR OF SUCCESS

TWO OF THE MOST POWERFUL
OF ALL HUMAN FEARS ARE THE
FEAR OF FAILURE AND THE FEAR
OF SUCCESS

	Ener	gy Key	
Energy Type	Definition	Energy Type	Definition
Gravity	Force caused by the attraction of all masses to mass of the earth.	Temperature	Differences in thermal energy of objects or the environment which the body senses as either heat or cold.
Motion	Change in position of objects or substances.	Chemical	Reactive elements in the environment
Mechanical	Rotation, vibration or motion of equipment, materials or tools.	Biological	Living organisms that pose health risks.
Electrical	The presence of an electrical charge or current.	Radiation	Elements that emit ions or atomic particles.
Pressure	Liquid or gas compressed or under a vacuum.	Sound	Audible vibrations cause from the contact of two or more objects.

Percent of Hazards Identified by Type

Key Takeaways

- In pre-job safety briefings, workers identify only about 45% of the hazards they
 face during the work period. Hazard recognition blind spots are consistent and
 predictable, regardless of trade, experience or education.
- Hazards that are easily identified (e.g., gravity, motion) are recognized instinctually and require comparatively low cognitive effort. Hazards that are most often missed (e.g., mechanical, pressure, chemical) are processed in the cerebrum and require relatively high cognitive effort.
- Field experiments showed that using the energy wheel improves hazard recognition by approximately 30%. The energy wheel is effective because it provides a simple set of reminders to search for commonly overlooked hazards

Application

For organizations already using the Energy Wheel:

- Determine common causes of MSDs
- Identify energy sources that cause most MSDs
- Possibly create icon/imagery or guide to highlight certain energy sources that are most related to MSDs

For organizations not yet using Energy Wheel:

- Introduce energy wheel as overall concept including research backing the implementation
- Include specific ways to focus on MSDs

.....

Energy Wheel Material

Slip into Shallow Trench w/Fracture

What Happened

Injured EE and a helper were installing an underground service in a new construction job site. A shallow trench (approximately 30-inches deep) had been completed and the service conductor was prepared for laying into the trench. The excavated area was rocky and the terrain was uneven. Injured EE was attempting to get some slack in the wire in order to install it in the meter can. EE slipped/tripped on the uneven ground and slid into the trench. EE landed with extreme force on his left foot, resulting in a fracture to the lower left leg (ankle, tibia & fibula area). EE was transported to a local medical facility and was admitted overnight in preparation for surgery to repair the fractures.

Learning Opportunities

1) When performing work at a job site where rough, rocky or uneven terrain may be present, the job briefing discussion should include the potential risks for this hazard. Communicate to the crew members that a continuous focus without distractions needs to be present while walking and working the job at

2) Job briefing should include the potential risk of hazards of excavations and trenches. Even shallow trenches can present hazards such as collapsing sidewall, rocks falling into the trench or spalling from the sidewalls of the trench When working inside trenches, ensure tools and spoil piles are kept a a = 0 a n a 6 and 1 et from the sides of the excavations. No walking, climbing or

performed on the spoil pile. The soil will be loose, ununstable.. The working side of the trench should remain clear ossible to help prevent the risk of trips and falls. Walk or work away from the sidewalls of trenches for shallow trenches and by for more deeper trenches.

ty footwear being worn by the employee was not a or, it is incumbent on all employees to ensure they are wearing ppropriate footwear for the job site or working location. otwear in good condition can help a person maintain upright alking and help reduce the potential for twisting ankles on small

Energy Source

Gravity

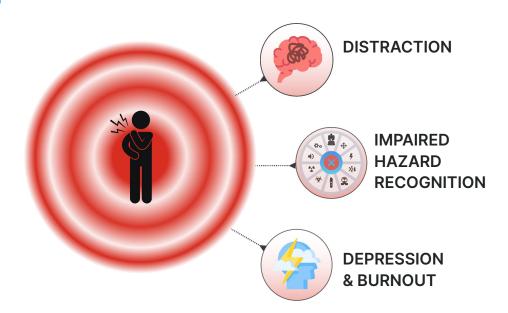
Jobsite Trench involved in this event

Low Serious Injury/Fatality ncident with a release of low energy in the absence of a lirect control where a serious

Options for Further Training

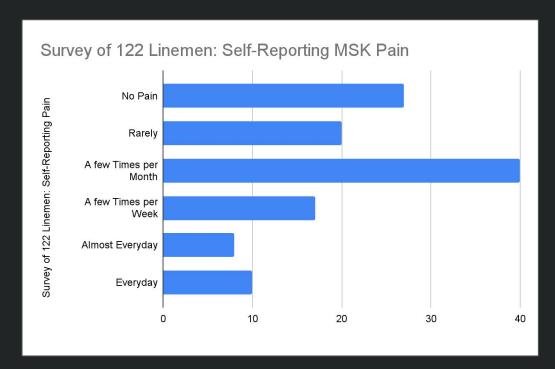
- Virtual Trainings
 - (30 min short course or 3 hour full course):
 https://www.safetyfunction.com/energy-based-hazard-recognition
- Free Monthly Meetings offered by The Construction Safety Research Alliance
 - Some meetings cover the Energy Wheel and are presented by industry leaders worldwide.
 Access past recordings here: https://www.csra.colorado.edu/csracop
 - Organizations can freely upload and share their own Energy Wheel documentation.
- Professional Safety Journal The Energy Wheel:
 - The Art and Science of Energy-Based Hazard Recognition

Questions?



Why Focus on MSK Pain?

- Soft-tissue injuries are the most common and costly injury for the utility industry.
- 2. The cascading effects of pain have negative implications for more serious injuries, productivity and mental health.



Lineman StudyFrequency of MSK Pain

61%

of those surveyed self-reported experiencing musculoskeletal pain at least once a month

Human Capacity & Resilience

Load (Energy) > Capacity = Injury

Developing a Safe and Resilient Workforce

1. Physical Capacity:

• Mobility, flexibility, soft-tissue resilience, balance, strength, and endurance

2. Physical Preparedness:

Warm-up (activate and mobilize), micro-breaks, recovery

3. Discomfort Management:

Address physical discomfort before activity (e.g. muscle tension)

4. Body Mechanics and Ergonomics

o Optimize strength and minimize strain

5. Mental Stress Management

Recognize and address mental stressors

6. Fatigue Management:

Awareness and recognition of fatigue

7. Hydration & Nutrition Preparedness:

Prevent: performance decline, cognitive impairment, and increased injury risk

Developing a Safe and Resilient Workforce

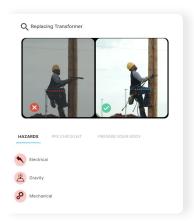
Movement Health

Body Mechanics & Ergonomics

Performance Optimization

LEADING INDICATORS OF SUCCESS

Factors That Drive Positive Outcomes



Integrate into the Normal Workflow

Pre-job Briefings/ Tailboard

- High-Energy Hazards
- Movement Health Action Steps
- Body Mechanics and Ergonomics
- Performance Optimization

Key Factors That Drive MSD & SIF Injury Prevention

Consistency is Key!

Resilience Building
Activities Integrated into the Workday

2 Knowledge & Hazard Recognition

Questions?